

Irrigation System Evaluation

Why a good DU is important

91

Brian Hockett District Manager

North West Kern
Resource Conservation District

Irrigation Mobile Laboratory

92

Irrigation Systems

- Furrows cotton, corn, tomatoes...
- Border Strip (flood) alfalfa, almonds...
- Solid Set Sprinkler carrots, onions…
- Hand Move Sprinkler alfalfa, cotton...
- Linear Move Sprinkler alfalfa, carrots...
- Center Pivot carrots, turf...
- Micro Drip almonds, pistachios, vines...
- Micro Sprinkler trees & vines
- Landscape Water Audit parks/golf courses

93


```
Irrigation system evaluations conducted by the Kern County Mobile Lab (1988 – 2014)

Drip 864
Micro sprinkler 742
Other 859
```

Total

95

Advantages of Micro Systems

Drip & Micro Sprinkler

96

Advantages of micro-irrigation

• Water savings. Conveyance loss is minimal. Evaporation, runoff and deep percolation are reduced as compared to other traditional irrigation systems. A water supply source with limited flow rates such as small water wells or city/rural water can be used.

98

Advantages of micro-irrigation (con't)

- Energy savings. A smaller power unit is required compared to sprinkler irrigation systems.
- Weed and disease reduction. Because of limited wetted area from non-spray type of micro-irrigation, weed growth is inhibited and disease incidences reduced

99

Advantages of micro-irrigation (con't)

- Can be automated. Fertilizers and chemicals can be applied with water through the irrigation system. Microirrigation systems can be automated which reduces labor requirements.
- Improved production on marginal land. On hilly terrain, micro-irrigation systems can operate with no runoff and without interference from the wind. The fields need not be leveled.

100

Distribution Uniformity (DU)

What does that mean?

How evenly water is applied over a given area

or

 $DU = \underbrace{\frac{\text{Ave. low } \frac{1}{4}}{\text{Ave. of the whole}}}$

101

Problems Encountered

- Excess pump pressure
- Dirty cone screen
- Improperly set regulating valves
- Plugged hose screens
- Plugged emitters
- Leaky valves
- Dirty water
- More than one emitter type

109

Maintenance

Measures Taken

- Trim pump impellers
- Clean cone screen
- Reset regulating valves
- Clean or replace hose screens
 Flush hoses
- Replace plugged emitters
- Repair leaky valves

 - Inject acid/chlorine
 - One emitter type

Results

Comparing Drip to Micro/ sprinkler over a 27 year time period

118

of Micro Systems Tested

(1606 total)

Time Span

•		(88–96)	(97-05)	(06-14)
•	Drip	109	210	545
•	Micro Sprinkler	128	252	362
•	Percent Micro	44%	73%	96%

System

© Brian Hockett for COOC 15

119

